p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.11C23, C23.390C24, C22.1902+ 1+4, C4⋊C4.228D4, C2.62(D4⋊5D4), C2.20(Q8⋊6D4), C4.43(C4.4D4), C23.41(C4○D4), C23.7Q8⋊56C2, C23.10D4⋊35C2, C23.11D4⋊29C2, (C23×C4).375C22, (C2×C42).518C22, C22.270(C22×D4), C24.3C22⋊47C2, (C22×C4).1482C23, C24.C22⋊64C2, (C22×D4).146C22, C2.C42.143C22, C2.48(C23.36C23), C2.32(C22.47C24), C2.16(C22.34C24), (C4×C4⋊C4)⋊68C2, (C2×C4).61(C2×D4), (C4×C22⋊C4)⋊73C2, (C2×C42.C2)⋊9C2, (C2×C4⋊D4).31C2, C2.16(C2×C4.4D4), (C2×C4).812(C4○D4), (C2×C4⋊C4).260C22, C22.267(C2×C4○D4), (C2×C22⋊C4).155C22, SmallGroup(128,1222)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.390C24
G = < a,b,c,d,e,f,g | a2=b2=c2=f2=1, d2=ca=ac, e2=b, g2=a, ab=ba, ede-1=gdg-1=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >
Subgroups: 580 in 280 conjugacy classes, 104 normal (42 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C24, C24, C2.C42, C2.C42, C2×C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4⋊D4, C42.C2, C23×C4, C22×D4, C22×D4, C4×C22⋊C4, C4×C4⋊C4, C23.7Q8, C24.C22, C24.3C22, C24.3C22, C23.10D4, C23.11D4, C2×C4⋊D4, C2×C42.C2, C23.390C24
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C4.4D4, C22×D4, C2×C4○D4, 2+ 1+4, C2×C4.4D4, C23.36C23, C22.34C24, D4⋊5D4, Q8⋊6D4, C22.47C24, C23.390C24
(1 36)(2 33)(3 34)(4 35)(5 63)(6 64)(7 61)(8 62)(9 16)(10 13)(11 14)(12 15)(17 24)(18 21)(19 22)(20 23)(25 30)(26 31)(27 32)(28 29)(37 44)(38 41)(39 42)(40 43)(45 60)(46 57)(47 58)(48 59)(49 54)(50 55)(51 56)(52 53)
(1 7)(2 8)(3 5)(4 6)(9 25)(10 26)(11 27)(12 28)(13 31)(14 32)(15 29)(16 30)(17 52)(18 49)(19 50)(20 51)(21 54)(22 55)(23 56)(24 53)(33 62)(34 63)(35 64)(36 61)(37 57)(38 58)(39 59)(40 60)(41 47)(42 48)(43 45)(44 46)
(1 34)(2 35)(3 36)(4 33)(5 61)(6 62)(7 63)(8 64)(9 14)(10 15)(11 16)(12 13)(17 22)(18 23)(19 24)(20 21)(25 32)(26 29)(27 30)(28 31)(37 42)(38 43)(39 44)(40 41)(45 58)(46 59)(47 60)(48 57)(49 56)(50 53)(51 54)(52 55)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 57 7 37)(2 47 8 41)(3 59 5 39)(4 45 6 43)(9 54 25 21)(10 50 26 19)(11 56 27 23)(12 52 28 17)(13 55 31 22)(14 51 32 20)(15 53 29 24)(16 49 30 18)(33 58 62 38)(34 48 63 42)(35 60 64 40)(36 46 61 44)
(1 47)(2 42)(3 45)(4 44)(5 43)(6 46)(7 41)(8 48)(9 17)(10 49)(11 19)(12 51)(13 54)(14 22)(15 56)(16 24)(18 26)(20 28)(21 31)(23 29)(25 52)(27 50)(30 53)(32 55)(33 39)(34 60)(35 37)(36 58)(38 61)(40 63)(57 64)(59 62)
(1 19 36 22)(2 23 33 20)(3 17 34 24)(4 21 35 18)(5 52 63 53)(6 54 64 49)(7 50 61 55)(8 56 62 51)(9 60 16 45)(10 46 13 57)(11 58 14 47)(12 48 15 59)(25 40 30 43)(26 44 31 37)(27 38 32 41)(28 42 29 39)
G:=sub<Sym(64)| (1,36)(2,33)(3,34)(4,35)(5,63)(6,64)(7,61)(8,62)(9,16)(10,13)(11,14)(12,15)(17,24)(18,21)(19,22)(20,23)(25,30)(26,31)(27,32)(28,29)(37,44)(38,41)(39,42)(40,43)(45,60)(46,57)(47,58)(48,59)(49,54)(50,55)(51,56)(52,53), (1,7)(2,8)(3,5)(4,6)(9,25)(10,26)(11,27)(12,28)(13,31)(14,32)(15,29)(16,30)(17,52)(18,49)(19,50)(20,51)(21,54)(22,55)(23,56)(24,53)(33,62)(34,63)(35,64)(36,61)(37,57)(38,58)(39,59)(40,60)(41,47)(42,48)(43,45)(44,46), (1,34)(2,35)(3,36)(4,33)(5,61)(6,62)(7,63)(8,64)(9,14)(10,15)(11,16)(12,13)(17,22)(18,23)(19,24)(20,21)(25,32)(26,29)(27,30)(28,31)(37,42)(38,43)(39,44)(40,41)(45,58)(46,59)(47,60)(48,57)(49,56)(50,53)(51,54)(52,55), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,57,7,37)(2,47,8,41)(3,59,5,39)(4,45,6,43)(9,54,25,21)(10,50,26,19)(11,56,27,23)(12,52,28,17)(13,55,31,22)(14,51,32,20)(15,53,29,24)(16,49,30,18)(33,58,62,38)(34,48,63,42)(35,60,64,40)(36,46,61,44), (1,47)(2,42)(3,45)(4,44)(5,43)(6,46)(7,41)(8,48)(9,17)(10,49)(11,19)(12,51)(13,54)(14,22)(15,56)(16,24)(18,26)(20,28)(21,31)(23,29)(25,52)(27,50)(30,53)(32,55)(33,39)(34,60)(35,37)(36,58)(38,61)(40,63)(57,64)(59,62), (1,19,36,22)(2,23,33,20)(3,17,34,24)(4,21,35,18)(5,52,63,53)(6,54,64,49)(7,50,61,55)(8,56,62,51)(9,60,16,45)(10,46,13,57)(11,58,14,47)(12,48,15,59)(25,40,30,43)(26,44,31,37)(27,38,32,41)(28,42,29,39)>;
G:=Group( (1,36)(2,33)(3,34)(4,35)(5,63)(6,64)(7,61)(8,62)(9,16)(10,13)(11,14)(12,15)(17,24)(18,21)(19,22)(20,23)(25,30)(26,31)(27,32)(28,29)(37,44)(38,41)(39,42)(40,43)(45,60)(46,57)(47,58)(48,59)(49,54)(50,55)(51,56)(52,53), (1,7)(2,8)(3,5)(4,6)(9,25)(10,26)(11,27)(12,28)(13,31)(14,32)(15,29)(16,30)(17,52)(18,49)(19,50)(20,51)(21,54)(22,55)(23,56)(24,53)(33,62)(34,63)(35,64)(36,61)(37,57)(38,58)(39,59)(40,60)(41,47)(42,48)(43,45)(44,46), (1,34)(2,35)(3,36)(4,33)(5,61)(6,62)(7,63)(8,64)(9,14)(10,15)(11,16)(12,13)(17,22)(18,23)(19,24)(20,21)(25,32)(26,29)(27,30)(28,31)(37,42)(38,43)(39,44)(40,41)(45,58)(46,59)(47,60)(48,57)(49,56)(50,53)(51,54)(52,55), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,57,7,37)(2,47,8,41)(3,59,5,39)(4,45,6,43)(9,54,25,21)(10,50,26,19)(11,56,27,23)(12,52,28,17)(13,55,31,22)(14,51,32,20)(15,53,29,24)(16,49,30,18)(33,58,62,38)(34,48,63,42)(35,60,64,40)(36,46,61,44), (1,47)(2,42)(3,45)(4,44)(5,43)(6,46)(7,41)(8,48)(9,17)(10,49)(11,19)(12,51)(13,54)(14,22)(15,56)(16,24)(18,26)(20,28)(21,31)(23,29)(25,52)(27,50)(30,53)(32,55)(33,39)(34,60)(35,37)(36,58)(38,61)(40,63)(57,64)(59,62), (1,19,36,22)(2,23,33,20)(3,17,34,24)(4,21,35,18)(5,52,63,53)(6,54,64,49)(7,50,61,55)(8,56,62,51)(9,60,16,45)(10,46,13,57)(11,58,14,47)(12,48,15,59)(25,40,30,43)(26,44,31,37)(27,38,32,41)(28,42,29,39) );
G=PermutationGroup([[(1,36),(2,33),(3,34),(4,35),(5,63),(6,64),(7,61),(8,62),(9,16),(10,13),(11,14),(12,15),(17,24),(18,21),(19,22),(20,23),(25,30),(26,31),(27,32),(28,29),(37,44),(38,41),(39,42),(40,43),(45,60),(46,57),(47,58),(48,59),(49,54),(50,55),(51,56),(52,53)], [(1,7),(2,8),(3,5),(4,6),(9,25),(10,26),(11,27),(12,28),(13,31),(14,32),(15,29),(16,30),(17,52),(18,49),(19,50),(20,51),(21,54),(22,55),(23,56),(24,53),(33,62),(34,63),(35,64),(36,61),(37,57),(38,58),(39,59),(40,60),(41,47),(42,48),(43,45),(44,46)], [(1,34),(2,35),(3,36),(4,33),(5,61),(6,62),(7,63),(8,64),(9,14),(10,15),(11,16),(12,13),(17,22),(18,23),(19,24),(20,21),(25,32),(26,29),(27,30),(28,31),(37,42),(38,43),(39,44),(40,41),(45,58),(46,59),(47,60),(48,57),(49,56),(50,53),(51,54),(52,55)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,57,7,37),(2,47,8,41),(3,59,5,39),(4,45,6,43),(9,54,25,21),(10,50,26,19),(11,56,27,23),(12,52,28,17),(13,55,31,22),(14,51,32,20),(15,53,29,24),(16,49,30,18),(33,58,62,38),(34,48,63,42),(35,60,64,40),(36,46,61,44)], [(1,47),(2,42),(3,45),(4,44),(5,43),(6,46),(7,41),(8,48),(9,17),(10,49),(11,19),(12,51),(13,54),(14,22),(15,56),(16,24),(18,26),(20,28),(21,31),(23,29),(25,52),(27,50),(30,53),(32,55),(33,39),(34,60),(35,37),(36,58),(38,61),(40,63),(57,64),(59,62)], [(1,19,36,22),(2,23,33,20),(3,17,34,24),(4,21,35,18),(5,52,63,53),(6,54,64,49),(7,50,61,55),(8,56,62,51),(9,60,16,45),(10,46,13,57),(11,58,14,47),(12,48,15,59),(25,40,30,43),(26,44,31,37),(27,38,32,41),(28,42,29,39)]])
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4H | 4I | ··· | 4X | 4Y | 4Z |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 8 | 8 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | C4○D4 | C4○D4 | 2+ 1+4 |
kernel | C23.390C24 | C4×C22⋊C4 | C4×C4⋊C4 | C23.7Q8 | C24.C22 | C24.3C22 | C23.10D4 | C23.11D4 | C2×C4⋊D4 | C2×C42.C2 | C4⋊C4 | C2×C4 | C23 | C22 |
# reps | 1 | 1 | 1 | 1 | 2 | 4 | 2 | 2 | 1 | 1 | 4 | 12 | 4 | 2 |
Matrix representation of C23.390C24 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
2 | 0 | 0 | 0 | 0 | 0 |
2 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 2 | 0 | 0 |
0 | 0 | 4 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 1 |
0 | 0 | 0 | 0 | 0 | 3 |
1 | 3 | 0 | 0 | 0 | 0 |
1 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 2 | 0 | 0 |
0 | 0 | 4 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 1 |
0 | 0 | 0 | 0 | 2 | 3 |
2 | 1 | 0 | 0 | 0 | 0 |
2 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 3 | 0 | 0 | 0 | 0 |
1 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 2 |
0 | 0 | 0 | 0 | 4 | 1 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[2,2,0,0,0,0,0,3,0,0,0,0,0,0,4,4,0,0,0,0,2,1,0,0,0,0,0,0,2,0,0,0,0,0,1,3],[1,1,0,0,0,0,3,4,0,0,0,0,0,0,4,4,0,0,0,0,2,1,0,0,0,0,0,0,2,2,0,0,0,0,1,3],[2,2,0,0,0,0,1,3,0,0,0,0,0,0,4,4,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,1,0,0,0,0,3,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,4,0,0,0,0,2,1] >;
C23.390C24 in GAP, Magma, Sage, TeX
C_2^3._{390}C_2^4
% in TeX
G:=Group("C2^3.390C2^4");
// GroupNames label
G:=SmallGroup(128,1222);
// by ID
G=gap.SmallGroup(128,1222);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,560,253,232,758,723,675,80]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=1,d^2=c*a=a*c,e^2=b,g^2=a,a*b=b*a,e*d*e^-1=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations